BBA 67380

STEREOCHEMISTRY OF THE L-IDITOL DEHYDROGENASE CATALYZED HYDROGEN TRANSFER TO NAD

MIGUEL A ALIZADE, RUBIN BRESSLER and KLAUS BRENDEL

Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Ariz 85724 (USA)

(Received July 29th, 1974)

SUMMARY

The stereochemistry of the hydrogen transfer to NAD catalyzed by L-Iditol dehydrogenase from sheep liver (EC 11114) was investigated [4-3H]NAD was enzymatically reduced with non-labeled D-sorbitol and the position of the label at C₄ of the isolated [4-3H]NADH was determined The label was found to be exclusively confined to the B-position which suggests that the transferred hydrogen from D-sorbitol must have entered into the A-position of the NADH produced These data imply that L-iditol dehydrogenase from sheep liver is an A-enzyme

INTRODUCTION

NAD-linked dehydrogenases promote direct stereospecific transfer of hydrogen between the substrate and the C_4 position of the nicotinamide ring of the nucleotide [1] Examination of the steric course of reactions catalyzed by a large number of NAD-linked dehydrogenases has revealed that they promote hydrogen transfer specifically to and from either one or the other side of this prochiral position [1] The enzymes fall into two classes, those which catalyze the reversible addition of hydrogen to the same side of the nicotinamide ring as does alcohol dehydrogenase (EC 1 1 1 1), and those which catalyze transfer to the opposite side of the nicotinamide ring such as glutamate dehydrogenase (EC 1 4 1 3) [2]

The alcohol dehydrogenase type has been classified as a transfer to the A-position at C_4 of the nicotinamide ring, this position is identical with pro-R [1, 3] In contrast, the glutamate dehydrogenase type transfer to the B-position or pro-S [1–3] Since no transfer of hydrogen into or out of water has been observed, the transfer must be a direct one [1–3] In this communication the stereospecificity of the transfer of hydrogen from D-sorbitol to NAD catalyzed by L-iditol dehydrogenase [4] from sheep liver (L-iditol NAD+ 5-oxidoreductase, EC 1 1 1 14) was investigated [4- 3 H]NAD was enzymatically reduced with non-labeled D-sorbitol and the resultant [4- 3 H]NADH isolated and the chirality at C_4 of the nicotinamide ring determined

MATERIALS AND METHODS

D-Sorbitol, L-iditol dehydrogenase (EC 11114), L-lactate dehydrogenase

- (EC 1 1 1 27), L-malate dehydrogenase (EC 1 1 1 37) and L-glutamate dehydrogenase (EC 1 4 1 3) were purchased from Sigma, NAD⁺ nucleosidase (EC 3 2 2 5) from Worthington, [4-3H]NAD with a specific radioactivity of 50 Ci/mole from the Radiochemical Center
- (1) Isolation of $[4-^3H]NADH$ 20 μ moles non-labeled D-sorbitol were incubated at 25 °C with 0.8 μ mole $[4-^3H]NAD$ with a specific radioactivity of 1.1 108 dpm/ μ mole and 500 μ moles glycine–NaOH buffer (pH 9.5) per ml of reaction mixture. The reaction was started with 3 units L-iditol dehydrogenase with a spec act of 3.7 units/mg protein, and after 30 min when 0.25 μ mole NADH/ml was formed, the mixture was poured onto a 1 cm \times 5 cm DEAE-cellulose anion-exchange column in the bicarbonate form and washed first with 50 ml water (less than 2% of the total radioactivity appears in this fraction), and second with 100 ml 3.5 mM NH₄HCO₃ (this displaces NAD off the column) Finally, the NADH was eluted with 10–15 ml of 0.2 M NH₄HCO₃ [5], and concentrated in vacuo
- (2) Analysis of the chirality of the isolated [4-3H]NADH The ³H content of the A-position of 0.4 μ mole [4-3H]NADH was transferred to L-malate with 2.1 μ moles oxaloacetate and 5 units of L-malate dehydrogenase, an A-enzyme [6], in 1 ml of 1 M NH₄HCO₃ at pH 7 and 25 °C After the reaction had reached equilibrium, the enzyme was deactivated by heating for 1 min at 90 °C and the incubation mixture divided into two parts in order to separately determine the specific radioactivities of the concomitantly produced L-malate and NAD
- (3) Specific radioactivity of L-malate 0.2 μ mole L-malate was incubated with 0.3 unit diaphorase-free NAD+ nucleosidase for 30 min at 25 °C, diluted with 2.5 μ moles non-labeled L-malate, and the reaction mixture placed onto a 1 cm \times 20 cm Dowex-1 X 8, 200–400 mesh, anion exchanger in the formate form. The column was washed with 100 ml water and the L-malate eluted with a formic acid gradient according to the procedure of Bush et al. [7], was concentrated in vacuo and the specific radioactivity measured [8]
- (4) Specific radioactivity of NAD The second part of the above sample containing 0 20 μ mole of L-malate originally produced was diluted with 20 4 μ moles of non-labeled L-malate (which corresponds to a 102-fold dilution) Then the NAD present was reduced back to NADH, using 500 μ moles glycine-hydrazine buffer of pH 9 5 [8] and 5 units L-malate dehydrogenase/ml of reaction mixture The NADH thus generated was isolated as described above and its specific radioactivity measured In a second experiment another aliquot of the above solution (see Analysis of the chirality of the isolated [4-3H]NADH) containing 0 20 μ mole NAD was added to 25 μ moles L-lactate and the NAD reduced to NADH with 6 units L-lactate dehydrogenase in 500 μ moles/ml glycine-hydrazine buffer of pH 9 5 and isolated as described above [5] No significant difference was found in the specific radioactivity of the isolated NADH, using L-malate dehydrogenase or L-lactate dehydrogenase, in the experiments described above
- (5) 3H content of the B-position of $[4\text{-}^3H]NADH$ The 3H content of the B-position of 0 20 μ mole of $[4\text{-}^3H]NADH$ was transferred to L-glutamate with 1 8 μ mole oxaloacetate and 3 units L-glutamate dehydrogenase, a B-enzyme [2], in 1 ml of 1 M NH_4HCO_3 at a pH of 7 and 25 $^\circ$ C The L-glutamate formed was then diluted with 2 8 mmoles of non-labeled L-glutamate and recrystallized three times from water to constant specific radioactivity

RESULTS AND DISCUSSION

Table I summarizes the experimental results It can be shown that the transfer of hydrogen from D-sorbitol to NAD catalyzed by L-iditol dehydrogenase in analogy to other NAD-linked dehydrogenases studied is a direct transfer, not involving the hydrogen atoms of the surrounding medium [1] ³H in NADH produced by oxidation

TABLE I

³H TRANSFER FROM D-SORBITOL TO [4-³H]NAD CATALYZED BY L-IDITOL DEHYDRO-GENASE FROM SHEEP LIVER

The specific radioactivities in this table refer to the following steps of the overall reaction scheme

Specific radioactivity (dpm/µmole)

of D-sorbitol with [4-3H]NAD can be quantitatively transferred to L-glutamate with L-glutamate dehydrogenase, a B-enzyme [2] In addition, it was shown that when the A hydrogen atom was transferred to L-malate with L-malate dehydrogenase known to be an A-enzyme [5], less than 2% of the original specific radioactivity was transferred to L-malate and 98% was retained in NAD which is concomitantly produced

These experiments conclusively prove that the NADH produced in the L-iditol dehydrogenase reaction has its ³H content localized in the B-position, whereas, the newly acquired hydrogen atom from non-labeled D-sorbitol must have entered in the opposite or A-position. The results allow the enzyme L-iditol dehydrogenase, also known as D-sorbitol dehydrogenase (EC 1 1 1 14), from sheep liver to be classified, in regard to the stereospecificity of the hydrogen transfer to NAD, as an A-enzyme

ACKNOWLEDGEMENTS

This work was supported by USPHS Grants NIH AM14977 and NIH HL13636

REFERENCES

- 1 Vennesland, B (1958) Fed Proc 17, 1150-1156
- 2 Levy, H R and Vennesland, B (1957) J Biol Chem 228, 85-86

- 3 Richard, J H (1972) The Enzymes (Boyer, P D, ed), Vol 2, p 325, Academic Press, N Y
- 4 Smith, M G (1962) Biochem J 83, 135-144
- 5 Silverstein, E (1965) Anal Biochem 12, 199-212
- 6 Loewus, F A, Tchen, T T and Vennesland, B (1955) J Biol Chem 212, 787-800
- 7 Bush, H, Hurlbert, R B and Potter V R (1952) J Biol Chem 196, 717-727
- 8 Hohorst, H J (1963) Methods of Enzymatical Analyses (Bergmeyer, H U, ed), pp 328-332, Academic Press, N Y